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1 Introduction

The concept of equilibrium is widely used in economic analysis, as it allows

us to systematically explain and predict complex human behavior. More-

over, sharper predictions usually arise when the equilibrium is unique. The

uniqueness of equilibrium is important in many theoretical and applied stud-

ies.

This paper considers the equilibrium annuity price when it is endoge-

nously determined in an environment of heterogeneous survival probabilities.

While the existence of the equilibrium annuity price has been shown in many

papers in the literature, establishing its uniqueness turns out to be difficult.

Using an overlapping-generations model with annuities and public pension,

Abel (1986, p. 1086) mentions that multiple equilibria cannot be ruled out

unless the utility function is logarithmic. In a three-period life-cycle model

analyzing deferred and immediate annuities, Brugiavini (1993, p. 43) points

out that in general there exists at least one root to the equation defining

the equilibrium of the immediate annuity market. Regarding the issue of

uniqueness, she only mentions that there is a unique value for the equilib-

rium rate of return when preferences are specified in the logarithmic form (p.

60). In a model analyzing both annuity and life insurance, Villeneuve (2003,

p. 534) shows that there exists an equilibrium in the annuity market, but

“uniqueness is not warranted.”

The difficulty of establishing uniqueness of equilibrium in the above mod-

els with heterogeneous survival probabilities comes from the mutual depen-

dence of annuitization choices and the annuity price: the equilibrium annuity

price is determined by the buyers’ annuitization choices, which further de-

pend on the annuity price (and their survival probabilities). In understanding

the source of difficulty of the uniqueness proof, we observe that there is a

common expression that determines the equilibrium annuity price in various

models, such as Abel (1986), Brugiavini (1993), Villeneuve (2003) and Lau

and Zhang (2023). This motivates us to focus on a particular function, given

by (10) in Section 2, when we study uniqueness issues in annuity models.

To illustrate the underlying idea of our proof as clearly as possible, we

keep only the essential features from various papers and consider a simple

model of the annuity market, in which the equilibrium annuity price is de-

termined by the fixed point of a function that is similar to the corresponding

equations in the above-mentioned papers. We obtain two main results in this

paper. First, we show in Proposition 1 that the equilibrium annuity price

is always unique if the annuitization function, defined in (4) in Section 2,

is multiplicatively separable in survival probability and annuity price. This

result covers two well-known cases in the literature: the immediate annu-
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ity model with logarithmic utility function (Abel, 1986; Brown, 2003) and

the deferred annuity model in which the annuities are purchased in an early

period before the buyers’ survival probability information is revealed (Bru-

giavini, 1993). Second, we consider more general annuitization functions that

may not be multiplicatively separable. In this case, the proof is much more

complicated, and we transform the uniqueness condition to a more convenient

form, as (21) in Section 3. We then show in Proposition 2 that the equilib-

rium annuity price is unique for all time-separable utility functions, subject

to a sufficient condition on the probability density function of the annuitants’

survival probabilities. Various commonly-used distributions such as the uni-

form distribution and the normal distribution (with appropriate truncation

and parameter restrictions) satisfy this condition. Our results suggest that

uniqueness of the equilibrium can be established in annuity models with a

wide class of probability distributions.

It is puzzling why the sufficient condition for the uniqueness of equilib-

rium annuity price in Proposition 2 is expressed in terms of the survival

probability distribution only, but not other economic factors. We investigate

this question by linking the slope of the function determining the equilibrium

and the derivative of the annuity providers’ budget balance with respect to

the annuity price. It is shown that a change in annuity price has a positive

direct effect on the budget balance for all annuitants but a negative indirect

effect (through changing annuitization choices) for those with low survival

probabilities. According to this interpretation, the sufficient condition for

the uniqueness of equilibrium puts an upper bound on the indirect effect for

the low-risk group.

The rest of this paper is organized as follows. In Section 2, we introduce

a simple annuity model and characterize the equilibrium annuity price under

the zero-profit condition. In Section 3, we show that the equilibrium annuity

price is always unique when the annuitization function is multiplicatively

separable in survival probability and annuity price. In Section 4, we examine

the more general case that the annuitization function is not multiplicatively

separable, and obtain a sufficient condition for uniqueness of equilibrium.

We provide concluding remarks in Section 5.

2 A simple model of the annuity market

There are a variety of annuity models with asymmetric information (as in

Brugiavini, 1993; Brown, 2003; Villeneuve, 2003; Steinorth, 2012; Lau and

Zhang, 2023), incorporating different features such as a single contract versus

a menu of contracts, exclusive versus non-exclusive contracts, and pure life
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annuity versus annuities with guarantees or cost-of-living adjustment, etc.

Moreover, researchers represent survival probability heterogeneity as either

a continuous or discrete random variable. It is impossible to incorporate all

relevant features in one model. Observing a similar expression of the equilib-

rium condition in several papers in the literature, we choose a related model

of annuitization with survival probability heterogeneity to study uniqueness

issues of the equilibrium annuity price.

Three features of this model are highlighted. First, there is a continuum of

annuitants indexed by their private information of the probability of surviv-

ing to the second period (θ). This private information is the source of adverse
selection, in which the annuitants with longer expected lifetime demand more

annuities. Second, instead of exclusive contracts with price convexity (as in

Eichenbaum and Peled, 1987; Steinorth, 2012), it is assumed that the annuity

providers offer the annuitants a non-exclusive financial contract with linear

pricing (as in Abel, 1986; Brugiavini, 1993; Hosseini, 2015). The assumption

of non-exclusive annuity contracts with linear pricing, in which a typical an-

nuity provider specifies the unit price of an annuity and allows the annuitants

to choose the amount of purchase, is more in line with observed practices.1

Third, the equilibrium price of the annuity is determined by a zero-profit

condition, as in Abel (1986), Villeneuve (2003) and Hosseini (2015). This

condition is usually justified on the basis of the assumption of free entry and

exit of annuity companies.

The key elements of the two-period model of annuitization behavior in the

presence of survival probability heterogeneity capture the idea present in var-

ious models in the literature, such as Abel (1986), Brugiavini (1993), Brown

(2003), Villeneuve (2003), Lockwood (2012), and Lau and Zhang (2023). Our

proposed uniqueness proof is most clearly seen in this simple environment,

in which we do not consider other elements such as the public sector (Abel,

1986), deferred annuities (Brugiavini, 1993), life insurance (Villeneuve, 2003)

and bequest motive (Lockwood, 2012; Lau and Zhang, 2023).

1More generally, non-exclusive trade is observed in various markets such as the security

or insurance market (Attar et al., 2011). On the other hand, the effectiveness of exclusive

contracts in the annuity market has been questioned in the literature. Abel (1986) argues

that the specification of exclusive contracts may not be an appropriate assumption for the

annuity market because it is difficult to determine whether a buyer also holds annuities

from other providers. A similar point has also been mentioned by Cawley and Philipson

(1999, p. 831): “several small contracts would be cheaper than a large one under convex

pricing.”
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2.1 Annuitization choices

In the model, there are a continuum of annuitants who have just retired

and live for two periods at most: Period 1 with certainty and Period 2 with

some probability. The two periods correspond to, respectively, the early and

advanced stages of retirement. The annuitants have different probabilities

of surviving to Period 2, represented by a probability density function f(θ),
where θ ∈ [θL, θH ] represents survival probability and 0 ≤ θL < θH ≤ 1.
The annuity contract operates as follows. It is offered in Period 1, and

the price of one unit of annuity is p. If an annuitant buys one unit of annuity
in Period 1, she will receive one dollar in Period 2 if and only if she is alive.2

With this annuity product, the budget constraints of the annuitants who

survive to Period 2 are given by

c1 = w − pα, (1)

and

c2 = α, (2)

where ci is the level of consumption expenditure in Period i (i = 1, 2), α
is the amount of annuity purchase and w is the retirement wealth, which is
assumed to be the same for every annuitant in this model.

It is assumed that an annuitant with survival probability θ has time-
separable utility function

U (c1, c2; θ) = u (c1) + θδu (c2) , (3)

where δ (δ ≤ 1) is the subjective discount factor. Moreover, the standard
assumptions that u (c) is strictly concave and limc→0 u

0
(c) =∞ hold.

Combining (1), (2) and (3), the annuitant’s decision problem becomes

max
α
[u (w − pα) + θδu (α)] .

It is straightforward to show that the optimal annuity choice of a buyer with

survival probability θ when facing annuity price p, denoted by α (θ, p), is an
interior solution in the interval (0, w) and is defined by

pu0 (w − pα (θ, p)) = θδu0 (α (θ, p)) . (4)

2We define the annuity contract in terms of the annuity price (p), as in Brown (2003).
In this case, the annuity payout is fixed at the normalized level of 1. Alternatively, it can

be defined in terms of the annuity payout level, as in Abel (1986), Brugiavini (1993) and

Lockwood (2012). The two specifications are equivalent, with the annuity price negatively

related to the annuity payout.
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This optimal choice is unique.3 Moreover,

∂α (θ, p)

∂θ
=

−δu0 (α (θ, p))
p2u00 (w − pα (θ, p)) + θδu00 (α (θ, p))

> 0. (5)

The annuity purchase and survival probability of the annuitants are positively

related. The positive correlation is similar to (11) of Abel (1986).

2.2 The equilibrium relationship under the zero-profit

assumption

The next step is to determine the equilibrium value of the annuity price in this

model. When the annuity price is p, the total amount of annuity premium

received by the annuity providers at Period 1 is
R θH

θL
pα (θ, p) f(θ)dθ. Together

with investment return, the corresponding value in Period 2 given by

R

Z θH

θL
pα (θ, p) f(θ)dθ, (6)

where α (θ, p) is defined in (4) and R (R ≥ 1) is the gross interest rate of
risk-free bond.

Since the annuitants have different probabilities θ to survive in Period
2 and receive the annuity payment, the annuity providers’ total expected

payment to the surviving annuitants isZ θH

θL
θα (θ, p) f(θ)dθ. (7)

We assume the zero-profit condition for annuity provision. Under this

assumption, the equilibrium price, denoted by p∗, is obtained by equating
(6) and (7).4 This leads to the relationship

p∗ =

R θH

θL
θα (θ, p∗) f(θ)dθ

R
R θH

θL
α (θ, p∗) f(θ)dθ

. (8)

3The left-hand side in (4) is strictly increasing in α(θ, p) while the right-hand side is
strictly decreasing in α(θ, p). These features guarantee a unique value of optimal α(θ, p)
at a given level of annuity price p.

4Similar to Abel (1986), Brugiavini (1993), Villeneuve (2003) and Lockwood (2012), we

focus on the risk-sharing feature of the annuity market and do not emphasize administra-

tive costs in annuity provision. Thus, administrative cost does not appear in the zero-profit

condition equating (6) and (7), leading to the well-known result that the return of holding

the risk-free bond is dominated by that of holding the annuity (Yaari, 1965; Davidoff et

al., 2005). As a result, the risk-free bond, which is relevant for the annuity providers,

is absent in the annuitant’s maximization problem when it is assumed that there is no

bequest motive in the annuitant’s objective function (3).

5



According to the above analysis, the buyers’ annuitization choices depend

on the annuity price, as in (4); at the same time, the annuity price depends on

the annuitization choices of different buyers under the zero-profit condition.

The mutual dependence of α (θ, p) and p is clearly seen when we express
the equilibrium annuity price (p∗) in (8) as the fixed point of the following
function:

J (p∗) = p∗, (9)

where J (p) is defined by

J (p) =

R θH

θL
θα (θ, p) f(θ)dθ

R
R θH

θL
α (θ, p) f(θ)dθ

=
1
R

R θH

θL
θα (θ, p) f(θ)dθR θH

θL
α (θ, p) f(θ)dθ

. (10)

The J (p) function in (10) is constructed on the basis of (6) and (7). The
denominator on the right-hand side of (10) is the total amount of annuities

purchased in Period 1, and the numerator is the present discounted value

(measured in Period 1) of the expected amount of payment by the annuity

providers to annuitants who are alive in Period 2. Both terms are calculated

at an arbitrary value of p.
The J (p) function is useful in subsequent analysis, because the relative

size of p and the ratio in J (p) determines whether the overall budget of the
annuity providers is in balance or not. It can easily be seen that when this

ratio is smaller than p, the total value of annuity revenue is higher than the
total value of payment, leading to a surplus for the annuity providers as a

whole. On the other hand, the overall budget of the annuity providers is in

deficit when this ratio is larger than p. The overall budget of all annuity
providers is in balance when (9) holds.

2.3 Uniqueness of the equilibrium annuity price

We now examine the function J (p) in (10) and look for the intersection of

this function and the 45-degree line when p ∈
h
E(θ)
R
, θ

H

R

i
.5 First, it can be

shown that

J

µ
E (θ)

R

¶
>
E (θ)

R
(11)

at the beginning point p = E(θ)
R
, because of the positive correlation between

annuitization choice and survival probability according to (5).6 When adverse
5The function J (p) is well-defined for all values of p in this range, because α (θ, p) > 0

for all θ > 0 according to (4).

6Formally, we haveRJ (p) =
R θH
θL

θα(θ,p)f(θ)dθR θH
θL

α(θ,p)f(θ)dθ
= E(θα(θ,p))

E(α(θ,p)) =
cov(θ,α(θ,p))
E(α(θ,p)) +E (θ) > E (θ)

for any value of p, because of (5). Substituting p = E(θ)
R leads to (11).
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selection is present, the overall budget of annuity providers is in deficit if the

annuity price is set at the actuarially fair level of
E(θ)
R
.

Second, consider the end point p = θH

R
. It is easy to show that

J

µ
θH

R

¶
=

R θH

θL
θα
³
θ, θ

H

R

´
f(θ)dθ

R
R θH

θL
α
³
θ, θ

H

R

´
f(θ)dθ

<

R θH

θL
θHα

³
θ, θ

H

R

´
f(θ)dθ

R
R θH

θL
α
³
θ, θ

H

R

´
f(θ)dθ

=
θH

R
, (12)

because θ < θH for θ ∈ £θL, θH¢. The overall budget of annuity providers is
in surplus if the price is at the end point p = θH

R
.

According to (11) and (12), J (p) is above the 45-degree line at the starting

point
E(θ)
R
but below the line at the end point θH

R
. Since the J (p) function is

continuous, we conclude that the equilibrium annuity price p∗ exists within
the interval

³
E(θ)
R
, θ

H

R

´
, as shown in Figure 1. Moreover, p∗ is unique if

J 0 (p∗) < 1. (13)

If the slope of the J (p) function at the equilibrium p∗ is less than 1, it is
not possible for the J (p) function to intersect the 45-degree line from below,
after intersecting it from above for the first time (which is guaranteed, as

seen in the existence proof above).7

[Insert Figure 1 here.]

In the following analysis, we use (13) to obtain two main results about

the uniqueness of equilibrium annuity price. In Section 3, we first consider

the simpler case in which the annuitization function α (θ, p), defined in (4),
is multiplicatively separable in θ and p. In Section 4, we consider the equi-
librium uniqueness issues for more general annuitization functions.

3 Multiplicatively separable annuitization func-

tion

It is well known in the literature that there are two special cases in which

the equilibrium annuity price is unique. We now use the framework in the

previous section to generalize these results.

In the first special case, the within-period utility function is logarithmic:

u (c) = ln c, (14)

7See also Stokey et al. (1989, pp. 50-51) for similar points.
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as in Appendix B of Abel (1986). He uses an overlapping-generations model

with uncertain lifetimes to examine the effects of adverse selection on the

pricing of private annuities and on annuitants’ behavior, and shows that the

equilibrium of the annuity market is unique in the case of logarithmic utility

function, but multiple equilibria cannot be ruled out for more general utility

functions. The same result also appears in the model in Section 2. With

the logarithmic utility function (14), it is straightforward to show that (4)

becomes

α (θ, p) =
δwθ

(1 + δθ) p
. (15)

The annuitization function in (15) is an example of the class of multi-

plicatively separable functions:8

α (θ, p) = α1 (θ)α2 (p) . (16)

When α (θ, p) is given by (16), the corresponding J (p) function is

J (p) =

R θH

θL
θα1 (θ)α2 (p) f(θ)dθ

R
R θH

θL
α1 (θ)α2 (p) f(θ)dθ

=

R θH

θL
θα1 (θ) f(θ)dθ

R
R θH

θL
α1 (θ) f(θ)dθ

, (17)

which is independent of p.
The second special case appears in Brugiavini’s (1993) influential study,

in which she uses a three-period model with longevity risk only to understand

the role of uncertainty resolution on annuitization behavior. In that model,

the annuitants’ health characteristics are identical at an early age but dif-

ferent at an advanced age. When the equilibrium price of deferred annuities

is determined by the zero-profit condition, the corresponding annuitization

function is a special example of (16) with α1 (θ) = 1, because the amount of
deferred annuities purchased by all individuals at the early period are iden-

tical.9 When α1 (θ) = 1, the corresponding J (p) function can be simplified
to

J (p) =

R θH

θL
θα2 (p) f(θ)dθ

R
R θH

θL
α2 (p) f(θ)dθ

=

R θH

θL
θf(θ)dθ

R
R θH

θL
f(θ)dθ

=
E (θ)

R
. (18)

The buyer’s annuitization function in the immediate annuity model with

logarithmic utility function (as in Abel, 1986; Brown, 2003) and that in

the deferred annuity model with identical early health characteristics (as

8The specification of multiplicatively separable functions has been used in many studies

in economics and finance, such as Coeurdacier et al. (2015) and Babenko et al. (2016).
9This special case of α1 (θ) = 1 also appears if the annuitization function α (θ, p) is

mandated to be identical for all buyers by the government.
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in Brugiavini, 1993) are two special cases of the multiplicatively separable

function (16). In each of these two cases, the corresponding J (p) function is
independent of p, and

J 0 (p) = 0 (19)

for all value of p. Therefore, we conclude from (13) that the equilibrium

annuity price is unique.

We state the above results in the following proposition.

Proposition 1. Consider a two-period model in which the annuitants’
survival probabilities are heterogeneous and their decision problems are given
by (1) to (3). If the annuitization function is multiplicatively separable in
survival probability and annuity price, as in (16), then the equilibrium annuity
price ( p∗) is unique.
Proposition 1 shows that if the underlying economic factors, such as the

form of utility function (in the first special case) or information structure

(identical early health signal in the second special case), lead to a multiplica-

tively separable annuitization function, then the equilibrium annuity price is

always unique. The intuition of this proposition can be traced to the ratio of

the present discounted value of expected payment (measured in Period 1) to

the total amount of purchased annuities, given by the J (p) function in (10).
When the annuitization function α (θ, p) defined in (4) is multiplicatively
separable in θ and p, it is straightforward to see from (17) that both the

numerator and denominator of the J (p) function are proportional to α2 (p).
Thus, the effects of the annuity price (p) on the numerator and denominator
terms exactly cancel out, leading to a horizontal J (p) function. The fixed
point of the horizontal J (p) function is always unique.

4 More general annuitization functions

Proposition 1 is applicable when the annuitization function α (θ, p) is mul-
tiplicatively separable in θ and p. However, a buyer’s annuitization choice
generally depends on θ and p in a complicated manner,10 and (19) may not
hold. We now consider uniqueness issues in this general case.

When the annuitization function is more general and not multiplica-

tively separable, the following proposition states a sufficient condition for

the uniqueness of equilibrium annuity price. The proof of this proposition is

10For example, when the within-period utility function is CRRA: u(c) = c1−φ−1
1−φ , it

is straightforward to show that the annuitization function α (θ, p) is not multiplicatively
separable when φ 6= 1.
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more complicated than that of Proposition 1. After presenting the proof, we

will summarize the key underlying idea behind the proof.

Proposition 2. Consider a two-period model in which the annuitants’
survival probabilities are heterogeneous and their decision problems are given
by (1) to (3). If the probability density function of the annuitants’ survival
probabilities satisfies the condition that

d [θf (θ)]

dθ
= f(θ) + θf 0(θ) ≥ 0 (20)

for all θ ∈ £θL, θH¤, then the equilibrium annuity price ( p∗) is unique.
Proof:

Differentiating (10) with respect to p, we obtain

J 0 (p) =

R θH

θL
θ ∂α(θ,p)

∂p
f(θ)dθ

R
R θH

θL
α (θ, p) f(θ)dθ

− J (p)
R θH

θL
∂α(θ,p)

∂p
f(θ)dθR θH

θL
α (θ, p) f(θ)dθ

,

which holds for all values of p. At the equilibrium value p∗ defined by (9), it
can be shown that (13) is equivalent toR θH

θL
θ ∂α(θ,p∗)

∂p∗ f(θ)dθ −Rp∗ R θH

θL
∂α(θ,p∗)

∂p∗ f(θ)dθ

R
R θH

θL
α (θ, p∗) f(θ)dθ

< 1,

which can further be shown to be equivalent toZ θH

θL
K (θ, p∗) f(θ)dθ > 0, (21)

where

K (θ, p) = Rα (θ, p) + (Rp− θ)
∂α (θ, p)

∂p
. (22)

Differentiating (4) with respect to p, we obtain

∂α (θ, p)

∂p
=
u0 (w − pα (θ, p))− pα (θ, p)u00 (w − pα (θ, p))

p2u00 (w − pα (θ, p)) + θδu00 (α (θ, p))
< 0. (23)

In analyzing whether (21) holds or not, we separate
£
θL, θH

¤
into 2 inter-

vals:
£
θL, Rp∗

¤
and

¡
Rp∗, θH

¤
. As shown in subsequent analysis, the annu-

itants in these two intervals can be interpreted as belonging to the low-risk

and high-risk groups, respectively.
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For the high-risk group with θ ∈ ¡Rp∗, θH¤, we have θ > Rp∗. Combining
with (23), we conclude that K (θ, p∗) > 0 according to (22). As a result,Z θH

Rp∗
K (θ, p∗) f(θ)dθ > 0. (24)

For the low-risk group with θ ∈ £θL, Rp∗¤, we have θ < Rp∗. Thus,
Rα (θ, p∗) is positive and (Rp∗ − θ) ∂α(θ,p∗)

∂p
is negative, leading to an ambigu-

ous sign of K (θ, p∗) generally according to (22). Using (5), (22) and (23),
we obtain

K (θ, p) = (θ −Rp)
µ
θ

p

¶
∂α (θ, p)

∂θ

+θα (θ, p)
pu00 (w − pα (θ, p)) +Rδu00 (α (θ, p))
p2u00 (w − pα (θ, p)) + θδu00 (α (θ, p))

, (25)

which holds for all values of p.11 When θ ∈ £θL, Rp∗¤, we have
(p∗)2 u00 (w − p∗α (θ, p∗)) +Rp∗δu00 (α (θ, p∗))
(p∗)2 u00 (w − p∗α (θ, p∗)) + θδu00 (α (θ, p∗))

> 1. (26)

Combining (25) and (26), we obtainZ Rp∗

θL
K (θ, p∗) f(θ)dθ

>

Z Rp∗

θL

∙
(θ −Rp∗)

µ
θ

p∗

¶
∂α (θ, p∗)

∂θ
+

µ
θ

p∗

¶
α (θ, p∗)

¸
f(θ)dθ

=
1

p∗

Z Rp∗

θL
θ2
∂α (θ, p∗)

∂θ
f(θ)dθ−R

Z Rp∗

θL
θ
∂α (θ, p∗)

∂θ
f(θ)dθ+

1

p∗

Z Rp∗

θL
θα (θ, p∗) f(θ)dθ

=
1

p∗

½¡
Rp∗ − θL

¢
α
¡
θL, p∗

¢
θLf(θL) +

Z Rp∗

θL
(Rp∗ − θ)α (θ, p∗) [f(θ) + θf 0(θ)] dθ

¾
,

(27)

after applying integration by parts to the first and second terms in the third

line of (27). The first term in the last line of (27) is zero or positive. If (20)

holds, then the second term in the last line of (27) is zero or positive.12

11Standard (but tedious) procedure to derive (25) and some other equations can be

found in the Online Appendix.
12As seen in (27), we only need condition (20) to be satisfied in the interval

h
θL, Rp∗

i
.

However, p∗ is determined endogenously, depending on f(θ) and other factors such as the
annuitant’s utility function and the market interest rate. Proposition 2 specifies sufficient

condition (20) for the whole interval
h
θL, θH

i
, so that one could check whether it holds or

not irrespective of other components of the model.

11



Together with (24), we conclude that (21), or equivalently (13), holds

when (20) is satisfied. This proves Proposition 2.

To summarize, there are three main steps in the above proof. First, condi-

tion (13) for uniqueness is equivalent to (21). Second,
R θH

Rp∗K (θ, p
∗) f(θ)dθ >

0. Third, a sufficient condition for
R Rp∗
θL

K (θ, p∗) f(θ)dθ ≥ 0 to hold is (20),
as shown in (27).

4.1 The idea behind the proof of Proposition 2

The following decomposition is helpful to understand the intuition of condi-

tion (20) and the reasons behind the proof of Proposition 2. Combining (6)

and (7), we define

π (p) = R

Z θH

θL
pα (θ, p) f(θ)dθ −

Z θH

θL
θα (θ, p) f(θ)dθ, (28)

which expresses the annuity providers’ budget balance as a function of an-

nuity price. Differentiating (28) with respect to p, we have

π0 (p) = R
Z θH

θL
α (θ, p) f(θ)dθ +

Z θH

θL
(Rp− θ)

∂α (θ, p)

∂p
f(θ)dθ. (29)

As observed in (28), both the revenue and expected payment of the annu-

ity providers depend on annuitants’ choices α (θ, p), and the revenue also
depends directly on the price (p) paid for each unit of annuity purchase.
Accordingly, there is a useful way to decompose the effect of a change in

annuity price on the annuity providers’ budget balance: the direct effect on
the revenue, and the indirect effect on the revenue and payment through
changing annuitization behavior. The first term on the right-hand side of

(29), which does not take into account the induced changes in α (θ, p) and is
always positive, represents the direct effect. On the other hand, the indirect

effect on the budget balance through the change in α (θ, p) is given by the
second term on the right-hand side of (29). Comparing (29) with (21) and

(22), we conclude that (21) is equivalent to

π0 (p∗) > 0, (30)

which has an interpretation that the derivative of the budget balance with

respect to annuity price at the equilibrium (when p = p∗) is positive.
Pursuing the above line of thought, (22) represents the decomposition

into direct and indirect effects at the individual level (for an annuitant with

survival probability θ). It is helpful to examine the low-risk and high-risk

12



groups separately. We show in the proof of (24) that the indirect effect is

positive for the high-risk group, defined as those with θ ∈ ¡Rp∗, θH¤. The
underlying reason is as follows. An increase in p leads to lower annuitiza-
tion according to (23), and thus to a decrease in both revenue and payment

for the annuity providers. Since high-risk annuitants (θ > Rp∗) are more
likely to survive to Period 2, the magnitude of the expected decrease in pay-

ment (−θ ∂α(θ,p∗)
∂p

) is larger than the magnitude of the decrease in revenue

(−Rp∗ ∂α(θ,p∗)
∂p

). As a result, the indirect effect (Rp∗ − θ) ∂α(θ,p∗)
∂p

> 0 for each
high-risk annuitant.

The analysis for the low-risk group, when θ ∈ £θL, Rp∗¤, is more chal-
lenging. For this group, the magnitude of the expected decrease in payment

is smaller than that of the decrease in revenue. Thus, the indirect effect is

negative. Through the link of
∂α(θ,p)

∂p
and

∂α(θ,p)
∂θ

, and the use of integration

by parts, we show in (27) that the sum of direct and indirect effects is non-

negative if the sufficient condition (20) is satisfied.13 Condition (20), which

is about the probability density function of the survival probability, ensures

that the negative indirect effect is bounded for the low-risk group. To un-

derstand the intuition of this condition, first note that the area under the

probability density function f(θ) is 1 by definition. Condition (20) always
holds when f(θ) is upward sloping or horizontal. In these cases, the propor-
tion of annuitants with low risk is not high, leading to a non-negative total

effect. The problematic case may occur when f(θ) is downward-sloping and
the weight of annuitants with low survival probabilities is high. In particu-

lar, the annuitants with survival probabilities close to θL are likely to have
a strong influence on the magnitude of the negative indirect effect, given by

(Rp∗ − θ) ∂α(θ,p∗)
∂p

in (22), because the value of the first component is highest

at θ = θL. The restriction d[θf(θ)]
dθ

= f(θ) + θf 0(θ) ≥ 0 in (20) puts an up-
per bound on the weight of the low-risk group by preventing f(θ) to be too
steeply downward-sloping. When condition (20) is satisfied, the weight of

the low-risk group is not high enough to cause the sum of direct and indirect

effects to be negative for the low-risk group, according to (27). As a result,

(21) holds and the equilibrium annuity price is unique.

13The connection between
∂α(θ,p)

∂p (how a change in annuity price affects annuitization

choice) in (23) and
∂α(θ,p)

∂θ (how a change in survival probability affects annuitization

choice) in (5) is traced to the procedure that each of the two terms is obtained by differ-

entiating the same first-order condition (4). This link is important because it allows (22)

to be expressed in an equivalent form (25) that can easily be integrated with respect to θ,
as required by (21).

13



4.2 Probability density functions satisfying Proposi-

tion 2: Some applications

We show in Proposition 2 that the equilibrium annuity price is unique if

condition (20) on the survival probability distribution holds. However, the

result may not be very useful if this condition is restrictive. We now exam-

ine whether this condition is satisfied or not for several probability density

functions frequently used in the study of annuitization behavior.

In the two-period model, we assume that θ ∈ £θL, θH¤, where 0 ≤ θL <

θH ≤ 1. We first focus on the uniform distribution, with the probability

density function

f(θ) =
1

θH − θL
. (31)

Since f 0(θ) = 0, it is straightforward to conclude that (20) holds for the
uniform distribution.

Another commonly-used distribution, particularly when the random vari-

able exhibits the bell-shaped feature, is the normal distribution, where θ ∈
(−∞,∞). Since the normal distribution is not within a bounded interval,
we need to include an additional step of truncating them within the inter-

val
£
θL, θH

¤
. To fit θ ∈ £θL, θH¤, the probability density function of the

truncated normal distribution is given by14

f(θ) =
e−

1
2(

θ−μ
σ )

2

R θH

θL
e−

1
2(

θ−μ
σ )

2

dθ
, (32)

where μ and σ2 are the mean and variance of θ before truncation. It can be
shown from (32) that

f(θ) + θf 0(θ) =
∙
1− θ (θ − μ)

σ2

¸
f(θ).

Since 1 − θ(θ−μ)
σ2

is decreasing in θ, its smallest value occurs at θ = θH . We
conclude that if

σ2 ≥ θH
¡
θH − μ

¢
, (33)

then (20) holds for the truncated normal distribution (32). Condition (33)

means that the normal distribution has to be quite spread out.15

14The probability density function of a random variable with normal distribution ish
(2π)0.5 σ

i−1
e−

1
2(

θ−μ
σ )

2

, and the constant term is cancelled out for the truncated distrib-

ution (32).
15We aim to derive a verifiable condition, (33), which leads to the satisfaction of (20)
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The next example is the exponential distribution, where θ ≥ 0. The prob-
ability density function of the truncated exponential distribution in fitting

θ ∈ £θL, θH¤ is
f(θ) =

λe−λθR θH

θL
λe−λθdθ

, (34)

where λ > 0. Using (34), we obtain

f(θ) + θf 0(θ) = (1− λθ) f(θ).

Therefore, if

λ ≤ 1

θH
(35)

holds, then (20) holds for the truncated exponential distribution (34) with

the parameter restriction (35). When the annuitants’ survival probabilities

are distributed according to (34), condition (35) means that the probability

density function cannot be very steep.

The last example is the beta distribution, which varies between 0 and

1. To fit θ ∈ £θL, θH¤, we truncate the beta distribution, with the resulting
probability density function as16

f(θ) =
θa−1 (1− θ)b−1R θH

θL
θa−1 (1− θ)b−1 dθ

, (36)

where a > 0 and b > 0. It can be shown from (36) that

f(θ) + θf 0(θ) =
∙
a− (b− 1) θ

1− θ

¸
f(θ). (37)

It is easy to see that condition (20) always holds when 0 < b ≤ 1. Since
a − (b− 1) θ

1−θ is decreasing in θ when b > 1, its smallest value occurs at

θ = θH . Combining the above analysis, we conclude that if

b ≤ 1 + a
¡
1− θH

¢
θH

, (38)

for all values of θ. It can be seen from the last paragraph of Subsection 4.1 that the

problematic case may only happen for the low-risk group when θ is low. For a normal
distribution with an inverted-U shape, the probability density function is increasing when

θ is relatively low. Thus, condition (20) is likely to still hold even if restriction (33) is not
satisfied.
16When θ ∈ [0, 1], the beta distribution is given by

θa−1(1−θ)b−1R 1
0
θa−1(1−θ)b−1dθ , where

1R 1
0
θa−1(1−θ)b−1dθ is known as the beta function.
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then (20) holds for all θ ∈ £θL, θH¤ for the truncated beta distribution (36).
Different parameter values of the beta distribution generate different

shapes. One interesting case of the symmetric truncated beta distribution

complements the three distributions of survival probability discussed above.

When the beta distribution is generated by (36) with the restriction17

a = b < 1, (39)

a U-shaped pattern is observed. It is easy to see from (37) that when the

U-shaped f (θ) is generated by (36) and (39), condition (20) always hold.18

In Figure 2, we plot these four distributions that satisfy condition (20).19

In particular, we present examples for four major cases exhibiting different

features.20 In Panel A (uniform distribution), the probability density func-

tion f(θ) is constant, indicating that annuitants are equally likely to have
various levels of survival probability between θL and θH . In Panel B (normal
distribution, with truncation and restricted parameter values), f(θ) is first
increasing and then decreasing, indicating that the annuitants are more likely

to be in the middle range of survival probability. In Panel C (exponential

distribution, with truncation and parameter restriction), f(θ) is decreas-
ing, indicating that annuitants are more likely to have low levels of survival

probability. In Panel D (beta distribution, with truncation and restricted

parameter values), f(θ) is U-shaped, indicating that the annuitants are more
likely to have either very low or very high levels of survival probability.

[Insert Figure 2 here.]

17It is well known that the beta distribution is symmetric when a = b. Moreover, the
symmetric beta distribution generates a U-shaped pattern when a = b < 1, a uniform
distribution when a = b = 1 or a bell-shaped pattern when a = b > 1.
18While the U-shaped f(θ) may be less empirically relevant when compared with, for

example, the normal distribution with the inverted-U shape, we present this case to shed

light on the potentially problematic issue associated with the downward-sloping f(θ) when
θ is low.
19In Figure 2,

h
θL, θH

i
= [0.1, 0.9]. For the truncated normal distribution, we choose

μ = 0.5
³
θL + θH

´
= 0.5 and σ2 = 0.36, so as to make the distribution symmetric and

satisfy (33). We choose λ = 0.8 for the truncated exponential distribution. For the

truncated beta distribution, we choose a = 0.5 and b = 0.5 such that f(θ) is symmetric
and U-shaped. The values of E(θ) of these four distributions are 0.5, 0.5, 0.46 and 0.5,
respectively.
20We do not present the other major case of increasing probability density function (such

as the beta distribution with a = 5 and b = 0.95), because it is obvious that condition
(20) always holds when the probability density function f(θ) is increasing.
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5 Concluding remarks

The equilibrium of an economic model is usually expressed as the fixed point

of a function. An example is (9) in this paper, in which the equilibrium

price p∗ is consistent with the annuitants’ choices α (θ, p∗), which depends
on p∗ (as well as survival probability θ). While showing the uniqueness of
equilibrium is a useful step in many economic studies, it may sometimes be

difficult to prove (Abel, 1986, p. 1086; Villeneuve, 2003, p. 534), particularly

if the behavioral relationship is complicated.

This paper revisits uniqueness issues of the equilibrium annuity price.

Our starting point is the similar equations observed in many papers analyzing

insurance products, such as (14) of Abel (1986) about private annuities in

the presence of public pension,21 (8) and (9) of Villeneuve (2003) about

the annuity and life insurance markets, (1) of Fang et al. (2008) about

the Medigap insurance market, and (32) and (52) of Lau and Zhang (2023)

about public annuity plans. We examine whether the equilibrium annuity

price is unique or not by focusing on the similar equations in these papers. To

illustrate the underlying idea clearly, we choose a simple annuity model with

only one source of heterogeneity (survival probability) and do not include

other relevant factors.22

We obtain two main results, which are summarized in Table 1. Proposi-

tion 1 shows that the equilibrium annuity price is unique if the annuitization

function α (θ, p) is multiplicatively separable in survival probability and an-
nuity price, as in (16). This result includes the two well-known special cases

(the immediate annuity model with logarithmic utility function and the de-

21Equation (14) of Abel (1986) focuses on the difference of annuity revenue and payment,

with the equilibrium annuity payout (A∗) defined by

π (A∗) =
Z θH

θL
M (θ, A∗)α (θ, A∗) f(θ)dθ = 0,

where π (A) is the profit function and M (θ, A) = R − θA. This equation appears to be
quite different from other equations, but it is easy to show that A∗ can be expressed in
the same form after rearranging the terms, as follows:

R

Z θH

θL
α (θ, A∗) f(θ)dθ −A∗

Z θH

θL
θα (θ, A∗) f(θ)dθ = 0.

Note that Abel (1986) specifies the annuity in terms of payout instead of price, and we

express (14) of his paper using the notations of this paper. (Abel’s (1986) focus on the

difference of annuity revenue and payment inspires us to use the profit function (28) to

understand the reasons behind the proof of Proposition 2.)
22Benartzi et al. (2011) provide an excellent review regarding various factors relevant

to annuitization choices.
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ferred annuity model in which the annuitization function does not depend

on survival probability) in the literature. The main contribution of this pa-

per is the derivation of Proposition 2 that the equilibrium annuity price is

unique for all time-separable utility functions, provided that a sufficient con-

dition (20) is satisfied. Interestingly, this sufficient condition depends only

on the distribution of survival probabilities. We further show that this condi-

tion is not restrictive and it is satisfied by many distributions, including the

commonly-used uniform distribution and normal distribution (with appro-

priate truncation to fit the survival probabilities within the bounded interval£
θL, θH

¤
and with parameter restriction).

[Insert Table 1 here.]

The contributions of Proposition 2 can be viewed from two angles: the

results and the method. We prove uniqueness of equilibrium in a simple two-

period model with non-exclusive private annuities and asymmetric informa-

tion about (continuous) survival probability. Strictly speaking, the results of
Proposition 2 are applicable in this environment only. However, we believe

that the underlying idea of the proof, especially that related to the direct and

indirect effects of a change in annuity price on the budget balance of annuity

providers through the responses of high-risk and low-risk annuitants, and that

based on the link between
∂α(θ,p)

∂p
and

∂α(θ,p)
∂θ

, are also useful in other settings

involving annuity and insurance products. As an example, the method used
in the proof of Proposition 2 has already been successfully applied to show

that the equilibrium price is unique for the immediate annuity market in an

economy with risks in both longevity and income (Brugiavini, 1993, Section

4), provided that a sufficient condition about the annuitants’ survival prob-

ability density function conditional on income is satisfied. Applications to

other models will be left to future studies.
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Figure 1: The 𝑱𝑱(𝒑𝒑) function and its fixed point 
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Figure 2: Four probability density functions satisfying Proposition 2 
 

 
Panel A: Uniform distribution Panel B:  Truncated normal distribution 
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Table 1: Multiplicatively separable and more general annuitization functions 
 
 
 

 ( ), pα θ  ( )J p  Uniqueness of *p  
Immediate annuity market when 
annuitants have logarithmic utility 
functions (Abel, 1986; Brown, 2003) 

( ) ( )1 2 pα θ α=  ( ) ( )

( ) ( )
1

1

H

L

H

L

f d

R f d

θ

θ
θ

θ

θα θ θ θ

α θ θ θ
= ∫
∫

 
Always 

Deferred annuity market 
(Brugiavini, 1993) 

( )2 pα=  ( )E
R
θ

=  
Always 

Immediate annuity market when 
annuitants have general time-
separable utility functions 

Depends on θ  and p , but is 
not multiplicatively separable ( ) ( )

( ) ( )

,

,

H

L

H

L

p f d

R p f d

θ

θ
θ

θ

θα θ θ θ

α θ θ θ
= ∫
∫

 
Sufficient condition: (20) 

 




